Accumulator Ring Beam Optics

Jorge J. Soto 1 John A. Johnstone 2 Jeffrey Eldred 2

 1 Chabot College 2 Fermilab

Abstract

A new Proton Accumulator Ring is being proposed as a future upgrade to the Fermilab Complex for new physics experiments. This ring will extract the beam from the Linear accelerator at 0.8 GeV and then inject into the PIP-II Booster ring, enabling a 0.8 - 1.0 GeV upgrade. While studying the beam optics of the current Booster ring, a preliminary lattice design of the Proton Accumulator Ring was transcribed from an older version of Methodical Accelerator Design to a more recent version (MAD-X). A successful translation of the ring optics is verified by a comparison of the twiss outputs between both versions of the program.

Background

Figure 1. Idealized Booster Lattice Cell.

Figure 2. Booster Cell Twiss Plot.

- The Courant-Snyder parameters β_x and β_y is determined by the optics of the ring.
- $lacktriang{lacktriang}{lacktriang}$ magnets focus horizontally, while Defocusing magnets focus vertically.

Courant-Snyder Parameter β

• The amplitude of a particle's oscillation is described by the beta function, $\beta(s)$.

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi_x(s) + \phi) \tag{2}$$

• $\beta_x^{1/2}$ and $\beta_y^{1/2}$ are proportional to the beam size in the transverse planes [1].

Booster Ring Twiss

Figure 3. Booster Ring Twiss Plot.

• The Booster Ring consists of a unique cell (Fig. 2) repeated 24 times (Fig. 3).

Particle Tracking

Analysis of the beam aperture and trajectory is done through MAD-X tracking. A program written in MATLAB takes output values from MAD-X tracking file and plots them in phase-space. The stability of the beam can then be verified throughout the lattice of the ring.

Figure 4. Booster Tracking Phase-Space.

• Here, 100 particles were tracked through the Booster Ring and plotted for 24 turns (Fig. 4).

In phase-space, particles move in an elliptical orbit through a number of turns. This verifies where particles are being lost and also determines the aperture required to build a ring without leading to collisions.

Tune

Tune describes the number of betatron oscillations per beam revolution. It is also equivalent to the phase advance, $\psi(s)$, around one orbit.

$$\nu = \frac{1}{2\pi} \oint \frac{1}{\beta(s)}, ds \tag{9}$$

Resonances

Tune values must be chosen carefully because certain values, such as integer values ($\nu = 1, 2, 3, ...$) and half integer values can cause betatron resonance, leading to beam loss [1].

Lattice File Conversion

The Proton Accumulator Ring lattice (Fig. 5) was successfully converted from MAD-8 to MAD-X. Comparison of maximum twiss values and tunes (Table 1) demonstrate successful conversion.

Values	
β_x ,max	18.72
β_y ,max	18.80
$ u_{\mathcal{X}}$	13.0
$ u_y$	13.9

Table 1. Proton Accumulator Ring Twiss and Tunes.

Figure 5. Proton Accumulator Ring Twiss Plot.

Acknowledgements and References

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-ACO2-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

[1] Dennis Barak et al. Concepts rookie book. Accelerator Division - Fermilab Opterations Department, 2020.